

Swiss Confederation

Theo Rindlisbacher / Lucien Chabbey

Guidance on the Determination of Helicopter Emissions

Reference: COO.2207.111.2.2015750

Guidance on the Determination of Helicopter Emissions, Edition 2, Dec 2015, FOCA, CH-3003 Bern Contact person: Theo Rindlisbacher

Tel. +41 58 465 93 76, Fax +41 58 465 92 12, theo.rindlisbacher@bazl.admin.ch

Contents

Motivation and Summa

- 1. Classification of Helicopters by Engine Category
 - 1.1 Piston Engine Powered Helicopters
 - 1.2 Single Engine Turboshaft Powered Helicopters
 - 1.3 Twin Engine Turboshaft Powered Helicopters
- 2. Operational Assumptions for Emissions Modelling
 - 2.1 General Remarks about Helicopter Operations and their Modelling
 - 2.2 Piston Engine Helicopter Operations
 - 2.3 Single Turboshaft Engine Helicopter Operations
 - 2.4 Twin Turboshaft Engine Helicopter Operations
- 3. Estimation of Fuel Flow and Emission Factors from Shaft Horsepower
 - 3.1 Piston Engines
 - 3.2 Turboshaft Engines
- 4. Final Calculations
 - 4.1 LTO Emissions
 - 4.2 Emissions for One Hour Operation
- 5. Helicopter Emissions Table

References

Appendix A: LTO data, cruise data and estimated emissions for a single engine turboshaft helicopter

Appendix B: LTO data, measured fuel flow and estimated emissions for a small twin engine turboshaft helicopter

Appendix C: LTO data, measured fuel flow and estimated emissions for a large twin engine turboshaft helicopter

Appendix D: Estimated one hour operation emissions and indicated scale factors

Appendix E: Graphical Representation of Approximation Functions for Piston Engines

Appendix F: Graphical Representation of Approximation Functions for Turboshaft Engines

Motivation and Summary

The civil aviation emission inventory of Switzerland is a bottom-up emission calculation based on individual aircraft tail numbers, which includes the tail numbers of helicopters. Although helicopters may be considered a minor source of aviation emissions, it is interesting to see that in a small country like Switzerland, more than 1000 individual helicopters have been flying in the last couple of years, some of them doing thousands of cycles or so called rotations. Switzerland therefore needs to include helicopters in the country's aviation emission inventory. However helicopter emissions are extremely difficult to assess because their engine emissions data are usually not publicly available and there is no generally accepted methodology on how to calculate helicopter emissions known by FOCA. In the past, the helicopter emission estimations done by FOCA have been based on two engine data sets only. Assumptions for fuel flow and Nitrogen oxides (NO_x) have been conservative and it has become evident that the share of helicopter emissions in the emission inventory of Switzerland has been significantly overestimated so far, at least for CO₂ and NO_x.

FOCA therefore launched project HELEN (**HEL**icopter **EN**gines) in January 2008 with the main goal to fill significant gaps of knowledge concerning the determination of helicopter emissions and to further improve the quality of the Swiss civil aviation emission inventory. The FOCA activity for engine emission testing is based on Swiss aviation law¹, which states that emissions from all engine powered aircraft have to be evaluated and tested. The legal requirement also incorporates aircraft engines that are currently unregulated and do not have an ICAO² emissions certification – like aircraft piston, helicopter, turboprop and small jet engines. Helicopter engine emissions have been measured at the engine test facility of RUAG AEROSPACE, Stans, Switzerland, where turboshaft engines are tested after overhaul. The measured turboshaft engines are owned by the Swiss Government. As turboshaft engine emissions measurements during ordinary engine performance tests are not very costly, the measurements have been extended to incorporate particle emissions, smoke number, carbonyls and to study the influence of different probe designs used for small engine exhaust diameters. These measurements have been performed by DLR INSTITUTE OF COMBUSTION TECHNOLOGY, Stuttgart, Germany.

The results of the measurements as well as confidential helicopter engine manufacturer data are the basis for the suggested mathematical functions for helicopter engine emission factors and fuel flow approximations. In order to make the functions work, only the input of shaft horsepower (SHP) is necessary. The maximum SHP of the engine(s) of a certain helicopter must first be determined and can be found in spec sheets or in flight manuals. Percentages of maximum SHP for different operating modes and times in mode are listed and are differentiated between three categories of helicopters: piston engine powered, single and twin turboshaft powered helicopters. Calculated shaft horsepower for different modes is then entered into approximation formulas which provide fuel flow and emission factors.

Power settings and times in mode for the modelling have been established a first time in 2009 with inflight measurements, from helicopter flight manuals and with the help of experienced flight instructors. In 2015, the Working Group 3 of the ICAO Committee on Environmental Protection (CAEP) developed a guidance for generating aggregated cycle emissions data for small turbofan, turboprop, helicopter and APU engines. FOCA was interested to compare the guidance of the report with its own guidance (2009). Indeed, the Working Group 3 used the FOCA guidance of 2009 as a basis but adjusted it. Some adaptations have been made and are re-used and implemented in the updated version of the FOCA guidance (2015). The main adaptations are listed below:

¹ SR 748.0, LFG Art. 58

² International Civil Aviation Organisation

- The GI departure (4 minutes) and the GI arrival (1 minute) have been merged into a single GI mode (5 minutes). Furthermore, the power setting of the GI mode has been adjusted to 20%, 13%, 7% and 6% for the piston engine, the single light engine, the twin light engine and the twin heavy engine respectively.
- Concerning the Take-off and Approach mode, the power settings stay unchanged in comparison with the guidance of 2009.
- A number of new helicopter models and engines have been added to the database.
- Finally, a new variable has been added with the 2015 update: The number of PM non-volatile matter is now roughly estimated and taken into account.

In consequence, the FOCA reviewed the 2009 helicopter emissions guidance and provides an update with edition 2. The edition 2 report presents the updated estimation of LTO³ and one hour emissions for individual helicopter types. It has to be noted that helicopters may fly many cycles (rotations) far away from an airport or heliport, especially for aerial work. To overcome problems with emissions estimation for helicopter rotations, estimations of per hour emissions are suggested to complement the LTO values. In the case of Switzerland, helicopter companies transmit the annual flight-hours of their helicopters to FOCA, which allows applying a flight-hour based emissions calculation in most cases. This guidance suggests using the emission values per hour also for determination of helicopter cruise emissions. Finally, the guidance material offers a summary list of helicopters with estimated LTO and one hour emissions for direct application in emission inventories.

_

³ LTO = Landing and Take-off cycle

1. Classification of Helicopters by Engine Category

1.1 Piston Engine Powered Helicopters

Piston engine powered helicopters are the smallest helicopter category. Most of them are two-seaters used for pilot education and training. Their operation includes a lot of hover exercises. Generally, they are operated at low level and at low altitudes because of their limited high altitude performance. Typical engines have four or six horizontally opposed cylinders and are air cooled. The engine technology goes back to the 1950s. The engines run on gasoline (AVGAS or MOGAS). For operational studies, the **Schweizer 269C** and the **Robinson R22** have been selected as the representative helicopter in this category.

1.2 Single Engine Turboshaft Powered Helicopters

The majority of civil helicopters are powered by a single gas turbine with a shaft for power extraction ("turboshaft engines"). The shaft drives a reduction gear for the main rotor and the tail rotor. Maximum shaft power for this helicopter category is normally in the range of 300 to 1000 kW. Most of the turboshaft engine compressors are single stage and the driving shaft is a free turbine, which means that it is not mechanically connected to the compressor shaft. The engines run on jet fuel. For operational studies, the **Eurocopter AS350B2 Ecureuil** has been selected as the representative helicopter in this category.

1.3 Twin Engine Turboshaft Powered Helicopters

The basic engine design is normally identical to that of the single engine turboshaft helicopters. The reason for making a distinction is the fact that the engines run at significantly lower power during normal operation compared to a single engine powered helicopter. If one engine should fail, the remaining engine is capable of restoring nearly the performance of the helicopter at twin engine operation. This has to be taken into account when doing emissions calculations, as e.g. a doubling of the fuel flow of the single engine for a twin engine

helicopter would result in an excessive overestimation of the fuel consumption. For operational studies, the **Agusta A109E** (MTOM 2850 kg) and the **Eurocopter AS332 Super Puma** (MTOM 8600 kg) have been chosen as the representative helicopters in this category.

2. Operational Assumptions for Emissions Modelling

2.1 General Remarks about Helicopter Operations and their Modelling

In contrast to fixed wing aircraft, helicopters usually need a high percentage of the maximum engine power during most of the flight segments. They often fly cycles (or so called rotations) away from an airport or heliport, especially for aerial work. This poses special problems to emissions estimation of helicopters. Airport or heliport movements are usually not consistent with the actual number of rotations flown. This guidance material suggests two ways of how to deal with helicopter emissions: A practitioner may use one of the three suggested standard LTO cycles below, corresponding to the respective helicopter category and multiply the resulting LTO emissions (see section 3) with the number of LTO (= number of movements divided by 2). This is suggested for airport LTO emissions calculation.

For a country's emission inventory, the practitioner may use the emissions calculation given per flight-hour, if the helicopter operating hours are known. In this case, helicopter rotations and cruise are considered to be included and the final emission calculation is given simply by multiplying the emissions per hour by the number of operating hours.

If helicopter cruise emissions have to be calculated for a given flight distance, it is suggested to start again with the emissions per hour data and divide them by an assumed mean cruising speed for the respective helicopter type.

Example:

Estimated fuel consumption for helicopter type XYZ (see section 3) = 133 kg fuel / hour Mean cruising speed (from spec sheet, flight manual etc.) ⁴ = 120 kts → 133 kg fuel / hour divided by 120 Nautical Miles / hour = 1.11 kg fuel / Nautical Mile The value of 1.11 kg fuel / Nautical Mile is multiplied by the number of Nautical Miles flown in order to get the number of kg fuel.

2.2 Piston Engine Helicopter Operations

Engine running time on ground shows a great seasonal variability, with a long engine warm up sequence in winter and a long cool down sequence at the end of the flight in summer (air cooled engines). Total engine ground running time has been determined to be approximately 5 minutes. Climb rate has been assumed 750ft/min based on performance tables of the reference helicopter manuals, resulting in more time needed to climb 3000ft (LTO) with piston engine than with turboshaft powered helicopters. However, approach time is considered similar to the other helicopter categories.

Engine percentage power for ground running is higher than for piston engine aircraft. From RPM and Manifold Pressure indications, it is assumed 20% of max. SHP. For hover and climb, nearly full SHP is used. According to information from experienced flight instructors, cruise power is usually set near the maximum continuous power. Therefore, 95% of max. SHP is the suggested cruise value. Approach shows a large variation in power settings, but it is generally relatively high (60% of max. SHP), either for maintaining a comfortable sink rate or for gaining speed in order to reduce flight time.

COO.2207.111.3.2270810

_

⁴ Aircraft or helicopter speeds are often given in kts (knots). 1 knot = 1 Nautical Mile per hour

Table 1: Suggested times in mode and % of max. SHP for piston engine helicopters. GI = Ground Idle before departure and after landing, TO = Hover and Climb, AP = Approach. "Mean operating % power per engine" = power setting for determination of emissions per flight-hour.

GI_Time (Min.)	TO_Time (Min.)	AP_Time (Min.)	GI %Power	TO %Power	AP %Power	Mean operating %Power per engine
5	4	5.5	20	95	60	90

2.3 Single Engine Turboshaft Helicopter Operations

The values of table 2 have been generated from flight testing. An example of detailed recording and calculation of weighted averages is given in Appendix A.

Table 2: Suggested times in mode and % of max. SHP for single engine turboshaft helicopters

						Mean operating
GI_Time	TO_Time	AP_Time	GI %Power	TO %Power	AP %Power	% power
(Min.)	(Min.)	(Min.)	per engine	per engine	per engine	per engine
5	3	5.5	13	87	46	80

2.4 Twin Engine Turboshaft Helicopter Operations

For twin engine helicopters, the % power values per engine are normally lower than for single engine helicopters. At 100% rotor torque, the two engines are running at less than their 100% power rating⁵. This has been taken into account in table 3 (see Appendix B). It is suggested to first calculate the emissions of one engine based on the % power and times in mode below, followed by a multiplication of the results by a factor of 2.

Table 3: Suggested times in mode and % of max. SHP per engine for small twin engine turboshaft helicopters (below 3.4 tons MTOM)

						Mean operating
GI_Time	TO_Time	AP_Time	GI %Power	TO %Power	AP %Power	% power
(Min.)	(Min.)	(Min.)	per engine	per engine	per engine	per engine
5	3	5.5	7	78	38	65

For large twin engine turboshaft helicopters it is suggested to further reduce the %power values (see Appendix C)

Table 4: Suggested times in mode and % of max. SHP per engine for large twin engine turboshaft

⁵ Generally, if an engine should fail, the remaining engine can restore nearly the twin engine performance (depending on the helicopter model).

						Mean
						operating
GI_Time	TO_Time	AP_Time	GI %Power	TO %Power	AP %Power	% power
(Min.)	(Min.)	(Min.)	per engine	per engine	per engine	per engine
5	3	5.5	6	66	32	62

3. Estimation of Fuel Flow and Emission Factors from Shaft Horsepower

The functions suggested in this section are based on the fitting of FOCA's own engine test data and on confidential engine manufacturer data. Manufacturer data are confidential and can not be published together with a corresponding engine name.

The main concept consists of entering a SHP value into the formulas and getting fuel flow (kg/s) and the emission factors for the standard pollutants (EI NO_x (g/kg), EI HC (g/kg), EI CO (g/kg), EI PM non volatile (g/kg), and EI PM number)⁶. The following steps are recommended:

- Firstly, the practitioner need to determine the maximum SHP of the engine(s) of the selected helicopter. The information can be found in publicly available helicopter or engine spec sheets or in helicopter operating manuals.
- Secondly, the helicopter category (piston, single turboshaft, twin turboshaft) has to be determined. With the corresponding table in section 2, the estimated SHP for the different operating modes of that helicopter engine are calculated.
- Next, the mode related SHPs are entered into the corresponding approximation functions, suggested in this section. The results are fuel flow and emission factors estimations for all modes of that particular helicopter.
- Finally, fuel flow and emission factors are combined with time in mode (from the appropriate table in section 2) to generate kg of fuel and grams emissions for LTO and one hour operation (see next section 4).

Due to a substantial variability of real measured emissions data between different engine types, the suggested general approximation functions for emissions may still lead to an error of a factor of two or more for a specific engine (see Appendix F). For PM emissions, these are very rough estimations and the error may be one order of magnitude. For fuel flow, the error is assumed +- 15%. The suggested formulas are representing the current state of knowledge. With additional data, a further refinement and improvement of the approximations would be possible.

⁶ NO_x = Nitrogen oxides, HC = unburned hydrocarbons (unburned fuel), CO = Carbon monoxide, PM non volatile = Non volatile ultra fine particles, generally soot

3.1 Piston Engines

• Fuel flow (kg/s):

Fuel flow
$$\approx 19 * 10^{-12} * SHP^4 - 10^{-9} * SHP^3 + 2.6 * 10^{-7} * SHP^2 + 4 * 10^{-5} * SHP + 0.006$$

Emission factors for NO_x

Table 5

Mode	Gl	TO	AP	CRUISE
% max. SHP	20%	95%	60%	90%
El Nox (g/kg)	1	1	4	2

• Emission factors for HC:

EI HC
$$\left(\frac{g}{kg}\right) \approx 80 * (SHP^{-0.35})$$

· Emission factors for CO:

EI CO
$$\left(\frac{g}{kg}\right) \approx 1000 \ (for \ all \ SHP)$$

· Emission factors for PM (non volatile particles, soot)

Table 6

Mode	Gl	TO	AP	CRUISE
% max. SHP	20%	95%	60%	90%
EI PM (g/kg)	0.05	0.1	0.04	0.07

All data for approximations of fuel flow and emission factors are taken from FOCA project ECERT. A graphical representation of approximation functions can be found in Appendix E.

• PM number:

PM number
$$\approx \frac{EIPM\left(\frac{g}{kg}\right)}{\frac{\pi}{6}*Mean\ Particle\ Size^3(nm^3)*e^{(4.5*1.8^2)}}$$

El PM (g/kg) and the mean particle size depends on the power settings and are approximated in table 6 and 7 respectively.

Table 7

Estimation of the Mean Particle Size depending on the Power settings.

Piston Engine	Idle/Taxi	Approach	Takeoff	Mean
Power setting	20%	60%	95%	90%
Mean Particle Size nm	18.9	29.2	40.3	39.3

3.2 Turboshaft Engines

• Fuel flow (kg/s) for engines above 1000 SHP

Fuel flow
$$\approx 4.0539 * 10^{-18} * SHP^5 - 3.16298 * 10^{-14} * SHP^4 + 9.2087 * 10^{-11} * SHP^3 - 1.2156 * 10^{-7} * SHP^2 + 1.1476 * 10^{-4} * SHP + 0.01256$$

Fuel flow (kg/s) for engines above 600 SHP and maximum 1000 SHP

$$Fuel\ flow \approx 3.3158*10^{-16}*SHP^5 - 1.0175*10^{-12}*SHP^4 + 1.1627*10^{-9}*SHP^3 - 5.9528*10^{-7}*SHP^2 + 1.8168*10^{-4}*SHP + 0.0062945$$

• Fuel flow (kg/s) for engines up to 600 SHP

Fuel flow
$$\approx 2.197 * 10^{-15} * SHP^5 - 4.4441 * 10^{-12} * SHP^4 + 3.4208 * 10^{-9} * SHP^3 - 1.2138 * $10^{-6} * SHP^2 + 2.414 * 10^{-4} * SHP + 0.004583$$$

Emission factors for NO_x

$$EINOx\left(\frac{g}{kg}\right) \approx 0.2113*(SHP^{0.5677})$$

· Emission factors for HC

$$EI\ HC\left(\frac{g}{kg}\right)\approx 3819*(SHP^{-1.0801})$$

Emission factors for CO

$$EI~CO\left(\frac{g}{kg}\right) \approx 5660*(SHP^{-1.11})$$

Emission factors for PM (non volatile particles, soot)

EI PM non volatile
$$\left(\frac{g}{kg}\right) \approx -4.8*10^{-8}*SHP^2 + 2.3664*10^{-4}*SHP + 0.1056$$

• PM number:

$$PM \; number \cong rac{EI \; PM \left(rac{g}{kg}
ight)}{rac{\pi}{6}*Mean \; Particle \; Size^3 (nm^3)*e^{(4.5*1.8^2)}}$$

El PM (g/kg) can be obtained by applying the aforementioned equation. An estimation of the mean particle size in function of SHP is found in the table 8.

Table 8

Estimation of the Mean Particle Size depending on the Power settings and on the engine type.

Twin Engine (light)	Idle/Taxi		Approach	Takeoff		Mean	
Power setting		7%	38%		78%		65%
Mean Particle nm		20	21.8		35.8		31.1
Single Engine	Idle/Taxi		Approach	Takeoff		Mean	
Power setting		13%	46%		87%		80%
Mean Particle nm		19.1	24.2		38.5		36.5
Twin Engine (heavy)	Idle/Taxi		Approach	Takeoff		Mean	
Power setting		6%	32%		66%		62%
Mean Particle nm		20.2	20.4		31.5		30

A graphical representation of approximation functions can be found in Appendix F.

4. Final Calculations

4.1 LTO Emissions

LTO Fuel =
$$60 * (GI_{Time} * GI_{Fuel_{flow}} + TO_{Time} * TO_{Fuel_{flow}} + AP_{Time} * AP_{Fuel_{flow}}) * number of engines$$

Remark: The factor of 60 converts minutes to seconds, as the times in the tables of section 2 are given in minutes but the estimated fuel flow values are in kg per second (see sections 2 and 3 of this guidance material)

$$\text{LTO NOx} = 60 * \left(\text{GI}_{\text{Time}} * \text{GI}_{\text{Fuel}_{\text{flow}}} * \text{GI}_{\text{EI}_{\text{NOx}}} + \text{TO}_{\text{Time}} * \text{TO}_{\text{Fuel}_{\text{flow}}} * \text{TO}_{\text{EI}_{\text{NOx}}} + \text{AP}_{\text{Time}} * \text{AP}_{\text{Fuel}_{\text{flow}}} * \text{AP}_{\text{EI}_{\text{NOx}}} \right) * \text{number of engines}$$

LTO HC, CO and PM are calculated accordingly by replacement of EI NO_x by EI HC, EI CO or EI PM.

4.2 Emissions for One Hour Operation

Fuel for one hour operation =

3600 * (fuel flow for mean operating power per engine) * number of engines

NO_x emissions for one hour operation =

3600 * (fuel flow for mean operating power per engine) * (El NO_x for mean operating power per engine) * number of engines

HC, CO and PM emissions for one hour operation are calculated accordingly.

5. Helicopter Emissions Table

Based on this guidance material, estimated LTO emissions and emissions for one hour operation have been calculated for a variety of helicopters. The table is offered for direct application in emission inventories, for example by matching helicopter tail numbers with the emission results for the corresponding helicopter types contained in the table. The original excel file, containing all input data and calculation formulas can be downloaded from the FOCA Web As far as fuel consumption and emissions for one hour operation (respectively cruise) are concerned, the results have been scaled in a range of about +-15% for some of the helicopters according to information from operators. This procedure allows to more accurately reflecting differences between different helicopter models. With more information expected from operators in the future, the scaling factors will be updated. For details about current one hour operation scaling factors, see Appendix D.

Table 9: Estimated LTO emissions and one hour operation emissions for different helicopter models.

						101											
						LIO EMISSIONS	.0						SSIONS				
Code	Aircraft_ICA 0	Aircraft_Nam e	Aircraft_Nam Engine_Nam Max SHP per e engine	Max SHP per engine	Number_of_ Engines	LTO fuel (kg)	LTO NOx (g)	LTO HC (g)	LT0 C0 (g)	LTO PM non volatile (g)	LTO PM number	One hour fuel (kg)	One hour NOx (kg)	One hour HC (kg)	One hour CO (kg)	One hour PM non vol. (g)	One hour HC One hour CO One hour PM One hour PM (kg) (kg) non vol. (g) number
H011	876	SIKORSKY S76	PT6B-36A	981	2	59	499.9	573.6	547.2	11.6	3.463E+16	360	2.99	1.3	0.79	85	1.25E+18
H012	A119	AGUSTA A119	PT6B-37	006	-	31.5	210.5	87.3	288.8	6.4	3.3274E+16	216	1.77	0.07	0.78	54	_
H013	A139	AUGUSTA A139	PT6T-3D	1800	2	55	312.8	250.1	9.689	12.7	4.6879E+16	360	2.56	0.26	1.98	112	3.68E+18
H013	B412	Bell 412	PT6T-3	1800	2	55	419.5		873	12.7	4.6879E+16	360	4.1	1.76	1.12		
H017	A139	AGUSTA A139	PT6C-67C	1100	2	60.4	377.5	739.7	949.1	11.8	3.939E+16	412.2		1.37	1.65		
H020	EXPL	MD 900	PW206A	621	2	36	127.7	577.5	1158.2		3.0591E+16	223.2	1.08	0.87	3.39	43	7.88E+17
Н022	A109	AGUSTA A109E	PW206C	550	2	34.6	159.9	629.1	1216.7	5.4	2.9751E+16	194.4	1.01	1	3.73	35.8	1.18E+18
H030	A109	AGUSTA A109	PW207C	029	2	34.9	157.3	632.7	1226.6		3.084E+16	177.7	0.93	0.9098	3.4		1.15E+18
H031	B427	Bell 427	PW207D	572	2	34.9	150.4	243.7	671.7	5.6			1.19	0	1.91		
H032	EXPL	MD 902	PW207E	429	2	36.9	125.4	657.6	1227.3	5.4	2.8302E+16	212.8	1.05	0.83	3.22	36	6.53E+17
H101	AS65	AS 365 C1 DAUPHIN	ARRIEL 1A1	641	2	41.6	210.7	761.7	988.5	7.1	3.0735E+16	261	1.7	1.47	1.83	51	1.51E+18
H101	AS65	AS 365 C2 DAUPHIN	ARRIEL 1A2	641	2	41.6	210.7	761.7	988.5	7.1	3.0735E+16	261	1.7	1.47	1.83	51.2	1.51E+18
H102	AS35	AS 350 ECUREUIL	ARRIEL 1B	641	1	23.4	128.2	289.6	370.6	4.2	3.0155E+16	133.2	0.97	0.6	0.75	29	9.39E+17
H103	AS65	AS 365 N DAUPHIN	ARRIEL 1C	099	2	42.2	217.7	753	976.8	7.2	3.0964E+16	265.2	1.75	1.45	1.8	53	1.55E+18
H104	AS65	AS 365 N1 DAUPHIN	ARRIEL 1C1	200	2	43.4	231	724.2	938	7.6	3.143E+16	274.3	1.87	1.41	1.73	26	1.65E+18
H105	AS65	AS 365 DAUPHIN	ARRIEL 1C2	763	2	45.2	253.8	679.1	877.4	8.2	3.2145E+16	289.5	2.08	1.35	1.68	61	1.81E+18
H106	AS35	AS 350B ECUREUIL	ARRIEL 1D1	732	1	25.2	149.7	266.8	339.6	4.7	3.1321E+16	146.5	1.16	0.57	0.7	33	1
H106	AS50	AS 550 FENNEC	ARRIEL 1D1	732	-	25.2	149.7	266.8	339.6	4.7	3.1321E+16	146.5	1.16	0.57	0.7	33.4	9.87E+17
H107	AS55	AS 555 FENNEC	ARRIEL 1D1	712	2	43.8	235.5	713.8	924.1	7.7	3.1554E+16	277.1	1.91	1.4	1.72	25	1.68E+18
H108	A109	AGUSTA A109 K2	ARRIEL 1K1	738	2	44.6	246	700.8	206	8	3.1915E+16	255	1.79	1.24	1.53		1.75E+18
H108	BK17		ARRIEL 1E2	738	2	44.6	246	700.8	206	8	3.1915E+16	283.3	1.98	1.38		29	
H108	BK1/ AS35	AS 350 B3	ARRIEL 1E2	/38	2	97.6	246	700.8	313	5.5	3.1915E+16	283.3	1.98	1.38	1.7		1.74E+18
H110	AS35	AS 350 B3	ARRIEL 2B1	848	-	27.6	180.5		313		3.2659E+16	151.6		0.51	0.62		
H110	EC30	ll	ARRIEL 2B1	848	1	27.6	180.5		313	5.5	3.2659E+16	182.6	1.57	0.61	0.75	44.6	Ш
H111	AS65	AS 365 N3 DAUPHIN	ARRIEL 2C	839	2	47.8	286	642.6	826.6	6	3.2984E+16	308.9		1.31	1.61		
H111	EC55	EC 155 B	ARRIEL 2C1	839	2	47.8	286	642.6	826.6		3.2984E+16	308.9		1	1.61		
H112	EC55	EC 155 B1 AS 350B3	ARRIEL 2C2	944	2	51.2	329.9	603.6	774.4	10.2	3.4164E+16	337.4	2.73	1.26	1.55	6/	1.44E+18
H113	AS50	ASTAR	ARRIEL 2D	952	-	29.5	206.6	231.1	291.3	6.2	3.384E+16	200.3	1.82	0.59	0.72	52	1.53E+18
H114	876	SIKORSKY S-76 C+	ARRIEL 2S1	856	2	48.4	292	640.3	822.7	9.5	3.322E+16	313.4	2.38	1.3	1.6	02	1.02E+18
H115	876	SIKORSKY S-76C++	ARRIEL 2S2	897	2	90	310.7	624.2	800.7	9.7	3.3679E+16	324.5	2.56	1.28			1.08E+18
H121	AS55	AS 355 N	ARRIUS 1A	480	2	35			1156.2	5.4		216.2		1.67			
H122	EC35	EC 135	ARRIUS 2B1	633	2	41.2		769.1	9.666	7	3.0715E+16	259.3	1.66	1.49	1.84	51	
H122	EC35	EC 135	ARRIUS 2B2	633	2	41.2	206.9	769.1	9.666	7	3.0715E+16	259.3		1.49			1.50E+18 6.15E+17
C21H	LUZU	EC 120	ARRIUO ZI	764		10.01		304	405.3	7		<u>+</u>	U.UU	0.13			

Table 9: (Continued)

					1	LTO Emissions						One hour emi	emissions				
Code	Aircraft_ICA 0		Engine_Nam e	Max SHP per engine	Number_of_ Engines	LTO fuel (kg)	LTO NOx (g)	LTO HC (g) L1	LTO CO (g) V	LTO PM non volatile (g)	LTO PM number	One hour fuel (kg)	One hour NOx (kg)	One hour HC (kg)	One hour CO (kg)	One hour PM non vol. (g)	One hour PM number
H124	A109		ARRIUS 2K	670				ω,		7.3	E+16	0.7	.61	1.3	1.61	48	1.58E+18
H131	AL02		ARTOUSTE IIC5	402	-	18.1	75.4	378	489.2	2.7	2.718E+16	109.7	0.61	0.82	1.02	19.4	6.39E+17
H131	AL02	ALOUETTE II	ARTOUSTE IIC6	402	-	18.1	75.4	378	489.2	2.7	2.718E+16	109.7	0.61	0.82	1.02	19.4	6.39E+17
H132	EC20	EC-120 COLIBRI	ARTOUSTE III B	563	1	21.4	108.9	308.9	395.9	3.6	2.9258E+16	134.9	0.92	0.7	0.86	27	8.04E+17
H132	LAMA	SA315B LAMA	ARTOUSTE IIIB	563	1	21.4	108.9	308.9	395.9	3.6	2.9258E+16	159.2	1.08	0.83	1.02	32.2	5.89E+17
H132	AL03		ARTOUSTE	563	-	21.4	108.9	308.9	395.9	3.6	2.9258E+16	134.9	0.92	0.7	0.86	27.2	8.96E+17
H133	AS55		ARTOUSTE	563	2	37.6	175.8	802 1	1046 7	6		235 7		1.53	191	44	1 29F+18
H141	GAZL	SA341 GAZELLE	ASTAZOU IIIA	644	-	23.5	128.9	288.6	367.6	4.2	3.0155E+16	148.5	1.08	79.0	0.82	32	5.83E+17
H141	GAZL		ASTAZOU IIIN2	644	1	23.5	128.9	288.6	367.6	4.2	3.0155E+16	148.5	1.08	0.67	0.82	32	5.83E+17
H142	AL03		ASTAZOU	290	-	21.9	114.5	299.8	384.7	3.8	2.9446E+16	139.4	86.0	69.0	0.85	29	9.52E+17
H142	GAZL		ASTAZOU	590	-	21.9	114.5	299.8	384.7	3.8	2.9446E+16	139.4	0.98	0.69	0.85	28.9	5.28E+17
H142	GAZL		ASTAZOU XIVH	290	-	21.9	114.5	299.8	384.7	3.8	2.9446E+16	139.4	0.98	69.0		28.9	5.28E+17
H151	TIGR	EUROCOPT ER 665 TIGER	MTR 390	1450	2	69	507.6	613.6	781	15.2	4.3258E+16	476	4.76	1.17	1.43	133	1.95E+18
H161		HAL DHRUV MK.II	TM333-2B2	1219	2	63.4	421.3	688.7	881.4	12.9	4.0814E+16	434.1	3.95	1.29	1.56	112	3.68E+18
H201		HUGHES 500	DDA250- C18	317	1	16.4		438.2	571.2	2.3	2.5999E+16	98.8	0.48	0.96	1.2	16	2.94E+17
H202	A109	AGUSTA A109A II	DDA250- C20B	420	2	32.8	130.2	960.2	1262	4.9	2.8197E+16	203.5	1.04	1.82	2.28	34	1.12E+18
H202	AS55		DDA250- C20F	420	2	32.8	130.2	960.2	1262	4.9	2.8197E+16	203.5	1.04	1.82	2.28	34	1.01E+18
H202	A109		DDA250- C20B	420	2	32.8	130.2	960.2	1262	4.9	2.8197E+16	203.5	1.04	1.82	2.28	34	1.12E+18
H202	B105	BO 105	DDA250- C20	400	2	32.2	124.3	986.4	1297.6	4.7	2.7856E+16	199.6	7-	1.88	2.36	32.7	9.67E+17
H202	B105	BO 105	DDA250- C20B	420	2	32.8	130.2	960.2	1262	4.9	2.8197E+16	203.5	1.04	1.82	2.28	34	1.01E+18
H203	B06	BELL 206B	DDA250- C20	400	-	18.1	75.4	380	491.7	2.7	2.718E+16	109.5	0.61	0.82	1.03	19.3	5.71E+17
H203	B06	BELL 206B	DDA250- C20B	420	-	18.5	78.6	368.2	476.2	2.8	2.7368E+16	101	0.58	0.72	0.9	18	5.38E+17
H203	B06	BELL 206B	DDA250- C20J	420	1	18.5	78.6	368.2	476.2	2.8	2.7368E+16	101	0.58	0.72	0.9	18	5.38E+17
H203	EN48		DDA250- C20W	420	-	18.5	78.6	368.2	476.2	2.8	2.7368E+16	112.3	0.64	0.8	1	20.2	3.69E+17
H203	H500	HUGHES 501	DDA250- C20B	420	-	18.5	78.6	368.2	476.2	2.8	2.7368E+16	112.3	0.64	0.8	1	20.2	3.69E+17
H203	MD 52	MD 520N	C20	400	-	18.1	75.4	380	491.7	2.7	2.718E+16	109.5	0.61	0.82	1.03	19.3	3.53E+17
H204	B06	BELL 206B	C20R	450	-	19.1	85.1	354.8	457.7	3	2.7762E+16	105	0.63	0.7	0.86	19.4	5.73E+17
H204	B06	BELL 206B	DDA250- C20R/4	450	-	19.1	85.1	354.8	457.7	3	2.7762E+16	105	0.63	0.7	0.86	19.4	5.73E+17
H204	B06	BELL 206L	DDA250- C20R	450	-	19.1	85.1	354.8	457.7	3	2.7762E+16	116.7	0.7	0.77	96.0	22	6.39E+17
H204	H500	- 1	DDA250- C20R	450	1	19.1	85.1	354.8	457.7	3	2.7762E+16	116.7	0.7	0.77	96.0	21.6	3.95E+17
H205	A109	AGUSTA A109	DDA250- C20R/1	450	2	34	140	919.6	1206.8	5.2	2.8552E+16	209.7	1.11	1.74	2.18	35.9	1.18E+18
H205	A109		DDA250- C20R	450	2	34	140	919.6	1206.8	5.2	2.8552E+16	209.7	1.11	1.74	2.18	36	1.18E+18
H205	BOGT		DDA250- C20R	450	2	34	140	919.6	1206.8	5.2	2.8552E+16	209.7	1.11	1.74	2.18	35.9	1.06E+18
H206	B06	BELL 206L	DDA250- C30	650	1	23.6	130.5	286.5	365.5	4.2	3.0234E+16	149.4	1.11	99.0	0.82	32	9.55E+17
H206	B06		DDA250- C30P	650	1	23.6	130.5	286.5	365.5	4.2	3.0234E+16	149.4	1.11	99.0	0.82	32	9.55E+17
Н207	S76	SIKORSKY S76	C30S	650	2	41.6	212.2	750.1	972.9	7.1	3.084E+16	263	1.71	1.46	1.81	52	7.59E+17
H208	B222	BELL 222	C40B	715	2	43.8	237.1	710.5	918.7	7.7	3.1574E+16	277.8	1.92	1.39	1.72	25	1.68E+18

Table 9: (Continued). Green shaded lines are piston engine powered helicopters.

Total Colore Color						LTO Emissions						One hour emissions	ssions				
Heart	Aircraf				. 1	TO final (kg)	(a) AON	_	9	non	PM Pa		One hour	hour	One hour	One hour PM	
Maintenand Mai	B4.)A250- 0B	715			237.1	5	918.7	7.7	E+16	7.8		_	_	57	1.68E+18
Decay Colorado C	E	LAND EFIEL X	M 42-1		2	80.9	385.3	727.3	933.7	11.9		415.9	3.62	1.36	1.66	103	1.88E+18
No.	B4(.7B	099	-	23.6	130.5	286.5		4.2		149.4	1.11	99'0	0.82	32	9.55E+17
Heat 122 1915 191	MD		.7M	808	-	26.7	168.7	252.7	319.7	5.2		175.7	1.46	0.62	0.76	42	7.68E+17
Fig. 17.2 Fig. 17.2 Fig. 17.2 Fig. 2.2 Fig. 2	B0		t T63-A- 0	420	-		78.6	368.2		2.8		112.3	0.64	0.8		20	5.97E+17
Fig. 11 Fig. 11 Fig. 11 Fig. 12 Fig. 11 Fig.	B22		S101- 0C.1	735	2	44.6	246	704		8		282.6	1.98	1.38	1.7	99	1.74E+18
Activity	BK	T.1 B 75(S101- 0B.1	727	2	44.2	240.5	700.3		6.7	3.179E+16	280.7	1.96	1.38	1.71	58.1	1.72E+18
Heat Liber History Heat	AS) SD2 TL	LTS-101- 0D2	742	-	25.5	152.5	266.7	338.6	4.8		164	1.3	0.63	77.0		1.11E+18
	E C	JH-1H T5.	3 L13	1400		41.7	359.8	214.7	266.7	10.3		271	3.09	0.53	0.62		1.23E+18
Charlest	5	-AB-	3-09A	1100		36.6	273.3	246.5	308.9			235	2.33	0.59	0.73		9.55E+17
Milk Milk All Olivo All	H4		5-GA- 4A	4800	2	153.8	2380.2	319.6	385.1	51.8		1223.6	24.23	0.83	86:0	4	8.60E+18
Milk bill bill bill bill bill bill bill b	MIS		OTOW D-350	400	2	30	104.4	1095.3	1448.3	4.2	3.0809E+16		0.94	1.94			5.78E+17
No. State Colored Co	₩		2-117	1500	2	70.2	525.4	8.009	764.4	15.7	4.3822E+16	34	4.95	1.15			2.52E+18
STATE CORNERS TRACE CAT Stage 2	₹		3-117VMA	2200	2	86.4	816.8	472.6		23		621.2		0.98	1.18		3.85E+18
SMCNRSNY	H2		34-GE-7	3925	2	125.6	1688.7		428.3				17.3	0.82	0.98	388	7.10E+18
HELL CORP TOTO-CE-LOTT 1800 2	HES		4-GE-416	4380	2		1998.9	330.6	404	46.2		1083.4	20.37	0.81	0.98	427	7.81E+18
HAMMK TYDO-GE-700 1622 2 73 5753 571 724.9 16.9 44976E+16 5676 543 111 132 15 15 15 15 15 15 15 1	HUC		00-GE-401	1800	2	77.2	646.8	534.9	277		4.6879E+16		6.17	1.06	1.25	168	3.07E+18
DEPTINGENY CECTT-6 1920 2 7.9 6.93 514.1 6.44 6.44 1.9 4797E+16 6.64 6.66 1.03 1.24 180 1.9 1.0 1.0 1.24 1.8 1.9 1.0 1.0 1.0 1.2 1.0	94		00-GE-700	1622	2	73	575.3	571	724.9	16.9		507.6	5.43	1.11	1.32	15	2.74E+18
SSPOCHESTY SPECTT-8A 2240 29 1006 2410 1006 2545 755 1059 2545 1059	2H/		9-ZL	1920	2	79.8	693.9	514.1	644.8	19.9		564.7	99.9	1.03	1.24	180	5.90E+18
NILL MILE WILE WILE WILE WILE WILE WILE WILE W	68	l.	CT7-8A	2740	2	8.86	1066.2	419.1	524.5	28			10.59				3.97E+18
SUMPTROMESIAND ACCORDING NO. ACCORDING N	MI		D-136	11400	2	268.2	2426.4	2885.5	1893.6	95			4627.6				2.61E+19
SUPERINGRAM MAKILA 141 1820 2 78.7 39.1 46.4 45.76 16.4 31774E+16 45.8 3.1 0.19 1.32 15.1 PUMAR MAKILA 14 180 1 7 17.2 99.3 6970 0.5 9728BE+15 72 0.14 0.84 72 6.5 HUGHES HIO-380 190 1 8.7 20.8 12.1 8650 1.2 22557E+16 54.6 0.11 0.74 54.58 8 ENSTROM HIO-380 190 1 8.7 20.8 121.9 8850 1.2 22557E+16 54.6 0.11 0.74 54.58 8 SEMINIONALIA INCARDIA INCARDA HIO-380 19 1.10 8.7 20.8 121.9 8850 1.2 22557E+16 54.6 0.11 0.74 54.58 8 SEMINIONAL INCARDA HIO-380 19 1.0 8.7 1.10 8.850 1.2 22557E+16 54.6	*		L-10W	880	2	44.8	247.6	689.3	889.7		3.6784E+16	309	2.35	1.31	1.61	89	9.96E+17
R22 BETA HO-360 180 1 172 99.3 6970 0.5 97296E+15 72 0.14 0.84 72 6.5 HUGHES HO-360 190 1 20.8 12.19 8850 1.2 22557E+16 54.6 0.11 0.74 54.58 8 BORNISTOM HO-360 190 1 8.7 20.8 121.9 8850 1.2 22557E+16 54.6 0.11 0.74 54.58 8 SCHWICK HIO-360 190 1 8.7 20.8 121.9 8850 1.2 22557E+16 54.6 0.11 0.74 54.58 8 SCHWICK HIO-360 190 1 8.7 10.8 121.9 8650 1.2 2257E+16 54.6 0.11 0.74 54.58 8 SCHWICK HILLER UH TVO-435- 20.0 1 10.3 4.20 1.2 2257E+16 54.6 0.11 0.74 54.58 9.5	AS		AKILA 1A1	1820	2	78.7	391.1	46.4	457.6	16.4	3.1774E+16		3.1	0.19	1	151	
Signature House	22		-360	180	-	7	17.2	99.3	6970	0.5	9.7298E+15		0.14	0.84		6.5	
Sebuc HIO-360 190 1 87 20.8 1219 8850 12 2.2557E+16 54.6 0.11 0.74 54.58 8 Schweizer HIO-360 190 1 8.7 20.8 1219 8850 12 2.2557E+16 54.6 0.11 0.74 54.88 8 RA4 RAVEN HIO-360 245 1 1 8.5 19 10.18 8850 1.2 2.2557E+16 54.6 0.11 0.74 54.88 9 RA4 RAVEN HIO-340 245 1 10.8 8450 1.2 2.257E+16 59.9 0.12 0.72 59.88 9.5 HILLE NUH- TVO-435- TVO-435- 220 1 10.34 7300 0.5 9.3726E+15 82.3 0.16 0.91 82.33 5.8 Bell 47G-38 B 1AA 2.0 1 10.34 7300 0.5 9.3726E+15 64.6 0.13 0.76 64.6 0.13 0.76	H		098-0	190	-	8.7	20.8	121.9	8650	1.2		54.6	0.11	0.74	54.	80	1.17E+17
March Marc	Ë		098-0	190	-	8.7	20.8	121.9	8650	1.2		54.6	0.11	0.74		8	1.17E+17
HILLER UH. TVO-540-18 320 1 116 248 1432 11600 08 93726E+15 82 3 0.16 0.91 82.33 5.8 EN LACASIA MILLER UH. TVO-435- 220 1 7.3 16 1034 7300 0.5 93726E+15 64.6 0.13 0.76 64.62 15 80 194 85 80 10 10 10 10 10 10 10 10 10 10 10 10 10	H2(HIC	0-360	190	-	8.7	20.8	121.9	8650	1.2		54	0.11	0.74	54.	80 0	1.17E+17
Fig. 20	=	A UH-	0-540-1B	320		2 7	0.70	1/3.0	11600	2		8	0.16	0.04	8	, r,	8 50F+16
Not-435-	B47		0-435- D	220	-	7.3	16	103.4	7300	0.5	9.3726E		0.1	0.63		3.5	5.13E+16
BRISTOL SYCAMORE FIGURINARY ROTORWAY ROTORW	B47		0-435- A	266	-	9.2	20	121.1	9200	0.7	9.3726E		0.13	0.76		4.5	6.59E+16
FXEC 90 1 77.8 5000 0.4 1.0449E+16 34.5 0.07 0.48 34.5 2.4 3 ROTORHVAY ROTORHVAY ROTORHVAY ROTORHVAY 1.33 1 4.2 9.3 71.5 4200 0.3 9.3726E+15 28 0.06 0.42 28.04 2 2 2 2 2 2	SYC	OL AL	VIS	250	1	33.5	62	328.3	33500	2.7		276.8	0.55	2.52	276.8	19.4	2.84E+17
ROTORWAY ROTORWAY ROTORWAY 133 1 4.2 9.3 71.5 4200 0.3 9.3728E+15 28 0.06 0.42 28.04 2	EX	RWAY RC 90 RI	TORWAY RW-162	160	-	5	11	77.8	2000	0.4	1.0449E+	34.5	0.07	0.48	34.	2.4	3.52E+16
	SC	RWAY RC	TORWAY V 133	133	1	4.2	9.3	71.5	4200	0.3		28	0.00	0.42	28.	2	2.93E+16

Table 10: Comparison between the 2009 and 2015 FOCA guidance

Mean emission per helicopter	LTO fuel (kg)	Difference (%)	LTO PM (g)	Difference (%	LTO HC (g)	Difference (%	LTO CO (g)	Difference (%)	LTO NOx (g)	Difference (%)
Single Engine FOCA 2009	26.6		5.5		314		402.3		192.2	
FOCA 2015	22.9	-16.2	4.1	-34.1	309.6	-1.4	402.3	<1	127.9	-50.3
Light Twin Engine FOCA 2009	41.4		7.2		771.6		1003.2		214.5	
FOCA 2015	41.2	<1	7.1	-1.4	752.6	-2.5	1010.2	<1	215.2	<1
Heavy Twin Engine FOCA 2009	95.3		26.3		525.9		662.6		988.3	
FOCA 2015	92.9	-2.6	25.4	-3.5	501.5	-4.9	661.8	<1	932.6	-6
Piston Engine FOCA 2009	9.4		0.7		120.4		9371		19.4	
FOCA 2015	10.2	7.8	0.96	27.1	129.2	6.8	10179	7.9	21.9	11.4

References

- Rotorcraft Flight Manuals: Robinson R22, Schweizer 300C Helicopter Model 269C, Hughes 500D, Bell 206B, Eurocopter EC120B, EC145 (645), Agusta A109E, Agusta A119, Aerospatiale AS350 B2 Ecureuil, AS532 Cougar
- 2) FOCA engine database (not publicly available)
- 3) FOI (Swedish Defence Research Agency) engine database for turboprop and turboshaft engines (not publicly available)
- 4) Aircraft piston engine emissions, FOCA, 2007
- 5) Emission indices for gaseous pollutants and non-volatile particles of flight turboshaft engines, FOCA/DLR turboshaft engine measurements, FOCA/DLR, 2009 (not publicly available yet)
- 6) Helicopter performance test results, written communication to FOCA, Swiss Air Force Operations and Aircraft Evaluation, 2009
- 7) Helicopter performance test results, FOCA test flights, FOCA, 2009
- 8) Civil and military turboshaft specifications, www.jet-engine.net
- 9) Turboshaft specifications Turbomeca
- 10) Turboshaft specifications Pratt & Whitney Canada
- 11) Turboshaft specifications Honeywell
- 12) Turboshaft specifications Rolls-Royce
- 13) Engine specifications GE Aviation
- 14) Control of air pollution from aircraft and aircraft engines, US Environmental Protection Agency, US federal register, Volume 38, Number 136, July 17, 1973
- 15) Helicopter Pictures © by B. Baur, FOCA, Switzerland

Appendix A: LTO data, cruise data and estimated emissions for a single engine turboshaft helicopter

SINGLE ENGINE TURBINE HELICOPTER LTO AND CRUISE DATA	CRUISE and LTO MEAN				
HBXVA	CR Cruse (Mn) CR 75% 60 CR 85% 60 CR 85% 60 CR 90% 60	Est. SHP (kg/s)	Est. Mean El NOx (g/kg) 7.588 7.872 8.147 8.416 Est. Mean NOX(g) 1178 1178 1281 1281 1561	Est Mean El Est, Mean El HC (gkg) CO (g/kg) CO	Est Mean El PM (g/kg) 0.221 0.224 0.224 0.224 0.224 0.234 0.241 0.
Time Incr. Time sum Radadoque Engine N1 RoD Est. FF Est. EI Est. EI HC Est. EI CO Est. EI PM LTO MODE (Min) (Min) St. SHP % (Itimin) Est. SHP (kg/s) NOX(g/kg) (g/kg) (g/kg) (g/kg)	LTO Mean SHP % (Min.)	Est. SHP (kg/s)	Est. Mean El NOx (g/kg)	Est. Mean El	Est. Mean El PM (g/kg)
	GI 15 4 TO 87 2.8	639 0.048	3.043		0.131
TO 5 NM 3.7 7.7 EST. Hole EST. Hole EST. POR EST.	1	Est. Mean Fuel (kg) (kg) (kg) 4.9 TO 8.1 Total 1 13.0	Est. Mean NOx (g) 14.9 67.2 82.2	Est. Mean HC (9) (9) (9) (17.2 151.0 28.9 35.4 146.2 186.3	Est. Mean PM (g) 0.6 1.9
Time Inc. Time sum Rotodoque Engine N1 RoD Est. FF Est. El	Mean Time Mean SHP % (Min.)	Est. Mean FF (kg/s)	Est. Mean El NOx (g/kg)	Est. Mean El Est. Mean El HC (g/kg) CO (g/kg)	Est. Mean El PM (g/kg)
DCT 2.5 2.5 60 60 700 439 0.037 6.686 5.341 6.599 0.200 DCT 1 3.5 4.5 4.5 500 229 0.022 5678 7.878 9.081 0.178 APA 0.7 4.2 30 30 50 220 0.028 4.511 11.292 14.243 0.178 FINAL 0.3 4.5 15 15 78 250 10 0.028 4.511 11.292 14.243 0.139 FINAL 0.3 4.5 15 15 78 250 10 0.028 4.511 11.292 14.243 0.139 HOVER IGE 0.3 5.2 2.0 80 250 146 0.023 35.83 17.496 22.339 0.139 HOVER IGE 0.3 5.5 60 90 4.90 0.37 35.83 17.496 22.339 0.139 1 1.1	AP 46 5.5 GI 7 1	336 0.033	1.974 5-4	54.375 71.639 54.375 71.639	0.118
Est. Fuel Est. NOx Est. Fuel Est. NOx Est. Fuel Est. F	1	Est. Mean Fue (kg) (kg) 10.8 Gl 0.9 Total 2 11.6	Est. Mean NOx (g) 62.0 1.7 63.6	Est. Mean HC	Est. Mean PM (k) 1.9 0.1 2.0
TOTAL LTO 244 146.9 299.4 3842 46		TOTAL LTO 24.7	145.8	269.4 343.2	4.6

Appendix B: LTO data, measured fuel flow and estimated emissions for a small twin engine turboshaft helicopter (continued on next page)

	Est. El C per engi (g/kg)	36.315	Est. CO 652.2 88.5 740.7	Est. EI C per engi (g/kg)	11.324	24.443	38.336	145.88	180.0 289.9 469.9	1210.6
	Est. EI HC Est. EI C per engi (g/kg) (g/kg)	108.626 28.073 5.499	Est. HC (g) Est. CO 487.3 652.2 71.6 88.5 558.9 740.7	Est. EI HC Est. EI C per engi (g/kg) (g/kg)	9.033	19.097	29.592	108.626 145.88	134.0 227.7 361.7	920.6
	Est. El NOx per engine (g/kg)	2.795	Est NOx (g) 10.1 85.7 95.8	Est. El NOx per engine (g/kg)	5.072	3.422	2.718	1.372 Est NOx	1.7 73.9 75.6	171.4
	Est. SHP Est. FF per engine (kg/s)	0.010	Est. Fuel (kg) 5.7 13.0 18.7	Est. SHP Est. FF per per per per engine (kg/s)	0.028	0.022	0.016	0.010 Est. Fuel	1.2 16.6 17.8	36.5
	Est. SHP per engine	27 95 0 428	GI TO Total 1		270	135	90 315	27	GI AP Total 2	TOTAL
_	RoC RoD (ft/min)	0 0 1000	_	RoC RoD (ft/min)	700	500	250	0		
	Engine 2 FF (kg/s)	0.01583	Meas. Total fuel (kg) 5.3 11.7	Engine 2 FF (kg/s)	0.0257	0.0167	0.0148	0.01 Meas. Total fuel	1.2 14.6 15.8	32.9
	Engine 1 FF (kg/s)	0.01583	GI TO Total 1	Engine 1 FF (kg/s)	0.0257	0.0167	0.0148	0.01	GI TO Total 1	TOTAL LTO
	Engine 2 N1 %	60.3 74.7		Engine 2 N1 %			П			
	Engine 1 Engine 2 N1% N1%	61.5 75.5		Engine 1 Engine 2 N1 %						
	Total SHP %	21		Total SHP %	60	30	15 20 70	9		
(= MTOM)	Time sum Rotortorque (Min.) %	9 21 95		Rotortorque %	60	30	20 70	8		
5009 6C 550 SHP 450 SHP 8850 kg	Time sum (Min.)	3.3	8 2	Time sum (Min.)	2.5	4.2	5.2	6.5	5.5	
A109 PW206C 550 SHI 550 SHI 650 SHI 650 SHI 650 SHI 650 SHI 650 SHI	Time Incr. (Min)	3.3	4 E	Time Incr. (Min)	2.5	7.0	0.7	-	4.5	
TWIN ENGINE TURBINE HELICOPTER LTO DATA	LTO MODE	GR (full rotor RPM) HOVER IGE CL	TO 5 NM TO 3000ft	LTO MODE	DCT	AP	FINAL FINAL HOVER IGE	[O]	L 5NM L 3000ft	

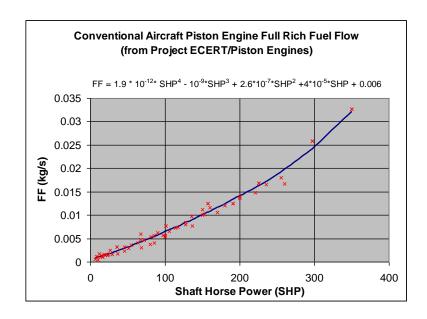
Appendix B: Weighted average LTO data, measured cruise fuel flow and estimated emissions for a small twin engine turboshaft helicopter

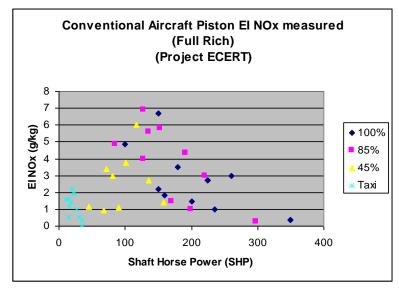
CR SHP (Mn.) per engine per engine per engine (kg/s) (kg/s) engine (kg/s)	Meas. Fuel Est. Mean <	Mean total Mean Time SHP % per SHP per per engine RSt. Mean E Est. Mea	Est Mean Est	Mean total Mean est StH Por Est Mean El Est Me	St. Mean Est.
CR SHP Feat SHP Est Mean Fer Ent Me	Meas. Fuel Est. Mean Fuel Est. Mean Fuel Est. Mean Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel	Mean total Mean Time Par SHP per Est Mean Fi Est Mean El E	Est Mean Fuel Est Mean HC Est Mean HC (g) CO (g) CO (g) GI 5.9 10.0 43.9 57.4 88.5 Total 18.9 95.7 505.4 664.9	Mean total Mean Time Per SHP % Mean est Est Mean FF EN Nox per Est. Mean El Es	St. Mean Fuel Est Mean HC Est Mean Est Mean Est M

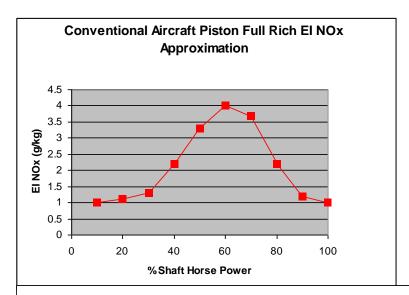
Appendix C: LTO data, measured fuel flow and estimated emissions for a large twin engine turboshaft helicopter (continued on next page)

	Est. per (9	0 0	Est.	Est. per (g	0 0 0 0 0 0	Est.
	Est. El CO per engine (g/kg)	39.865 13.885	Est HC (g) Est CO (g) Est 294.5 380.8 51.0 61.1 345.5 441.9	Est. El CO per engine (g/kg)	4.101 4.548 6.433 13.885 10.089 2.727 39.865	Est. HC (9) Est. CO (9) Est. To (9) Est. T
	Est. El HC per engine (g/kg)	30.740	Est. HC (g) 294.5 51.0 345.5	Est. El HC per engine (g/kg)	3.362 3.718 5.210 11.015 8.073 2.260 30.740	Est. HC (g) 79.9 146.9 226.8 572.3
	Est. EI NOx per engine (g/kg)	2.665	Est NOx (g) 35.6 340.4 376.1	Est. El NOx per engine (g/kg)	8.526 8.088 6.773 4.570 5.381 10.506 2.665	Est NOx (g) (g) 6.9 273.9 280.8 656.9
	Est. FF per engine (kg/s)	0.022	Est. Fuel (kg) (11.4 28.6 40.0	Est. FF per engine (kg/s)	0.057 0.054 0.047 0.033 0.038 0.069 0.022	Est. Fuel (kg) 2.6 34.4 37.0
	Est. SHP per engine	87 225 959	GI TO	Est. SHP per engine	674 614 449 225 300 974 87	GI AP Total 2 TOTAL LTO
	RoC RoD (ft/min)	0 0 0		RoC RoD (f//min)	700 500 500 250 250 0 0	
	Engine 2 FF (kg/s)	0.0233 0.0375 0.0653	Meas. Total fuel (kg) 12.4 27.8 40.2	Engine 2 FF (kg/s)	0.0542 0.05 0.047 0.0375 0.06 0.066	Meas. Total fuel (kg) 2.8 33.3 36.1 76.3
	Engine 1 FF (kg/s)	0.0233 0.0375 0.0653	GI TO Total 1	Engine 1 FF (kg/s)	0.0542 0.05 0.047 0.0375 0.06 0.066	GI TOTAL LTO
	Engine 2 N1 %	65 75 90	3	Engine 2 N1 %	84.5	
	Engine 1 Engine 2 N1 % N1 %	65 75 90		Engine 1 Engine 2 N1 % N1 %	83.9	
	Total SHP %	5.8		Total SHP %	45 41 30 15 20 20 65 65	
(= MTOM)	Rotortorque %	7 15 64	5	Rotortorque %	45 41 30 15 20 65 65	
SHP SHP Kg Kg	Time sum (Min.)	3.3	8 2	Time sum (Min.)	2.5 3.5 4.2 4.5 5.2 6.5	ပ္ ပ
AS32 MAKILA 141 1820 SHP 2996 SHP 1589 SHP 7600 kg	Time Incr. (Min)	3.3 0.7 0.1	φ 4 m	Time Incr. (Min)	2.5 1 0.7 0.3 0.3 1	4.5 5.5
HBXQE Type Engine Ref. Power: max. one engine 100% Rotor-Torque MC per engine TOM OM test end	LTO MODE	GI GR (full rotor RPM) HOVER IGE	TO 5 NM TO 3000ft	LTO MODE	DCT DCT AP FINAL FINAL HOVER IGE	L 5NM L 3000ft

Appendix C: Weighted average LTO data, measured cruise fuel flow and estimated emissions for a large twin engine turboshaft helicopter

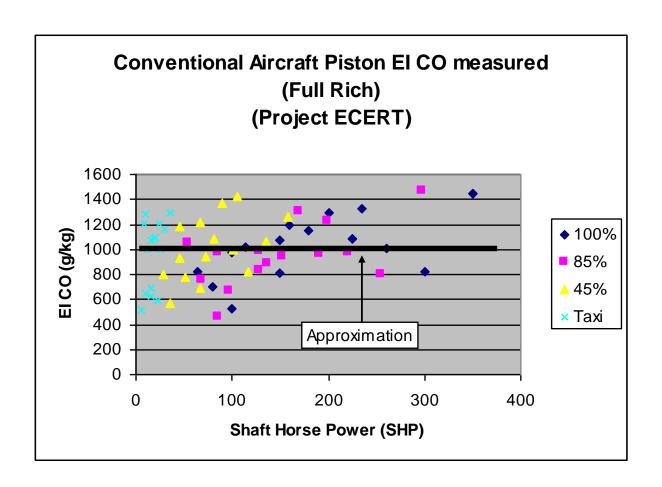

CRUISE	CRUISE and LTO MEAN	N						_			CRUISE and	CRUISE and LTO MODEL								
CR 75% 80%	Est. Total SHP 2247 2397	Mean Time (Min.) 60 60	를 늘 e	Est. SHP per engine 1124 1198	Est. Mean FF per engine (kg/s) 0.076 0.079	Est. Mean El NOx per engine (g/kg) 11.395	Est. Mean El HC per engine (g/kg) 1.837 1.806	Est. Mean E1 CO per engine (g/kg) 2.326 2.166	Est. N PN engin 0.		CR 75% 80%	Est. Total SHP 2247 2397	Mean Time (Min.) 60 60	P % gine	Est. SHP per engine 1124 1198	Est. Mean FF Est. Mean El NOx per (kg/s) engine (g/kg) 0.076 11.395		Est. Mean El HC per engine (g/kg) 1.937 1.806	Est. Mean El CO per engine (g/kg) 2.326 2.166	Est. Mean El PM per engine (g/kg) 0.284
%06 %08	2547 2696	09	74	1273	0.082	12.234	1.692 1.590	2.025 1.900	0.310	PRACTICAL	%06 ************************************	2547 2696	09	74	1273	0.082	12.637	1.692	2.025 1.900	0.370
	Operating Mass (kg) 7600 (light)	Meas. Fuel (kg) 480		75% 80% 85% 90%	Est. Mean Fuel (kg) 544 567 591 616	Est. Mean NOx (g) 6195 6705 7784	Est. Mean HC (g) 1053 1024 1000 980	Est. Mean CO (g) 1265 1228 1197 1170	Est. Mean PM (g) 154 169 183	NOT	_	Operating Mass (kg) 7600 (light)	Meas. Fuel (kg) 480		75% 80% 85% 90%	Est. Mean Fuel (kg) 544 567 591 616	Est. Mean NOx (g) 6195 6705 7784	Est. Mean HC (g) 1053 1024 1000 980	Est. Mean CO (g) 1265 1228 1197 1170	Est. Mean PM (g) 154 169 183
170	Mean total SHP %	Mean Time (Min.)	Mean est. SHP % per engine	Mean est. SHP per engine	Est. Mean FF per engine (kg/s)	Est. Mean El NOx per engine (g/kg)	Est. Mean El HC per engine (g/kg)	Est. Mean EI CO per engine (g/kg)	Est. Mean El Est. Mean El CO per engine (g/kg) engine (g/kg)		LTO	Mean total SHP %	Mean Time (Min.)	Mean est. SHP % per engine	Mean est. Is SHP per engine	Est. Mean FF I per engine (kg/s)	Est. Mean El NOx per engine (g/kg)	Est. Mean El HC per engine (g/kg)	Est. Mean FF Est. Mean El Est. Mean El Est. Mean El Est. Mean El PM per Per engine NOx per HC per CO per PM per (46/9) engine (9/49) engine (9	Est. Mean El PM per engine (g/kg)
<u>ت</u> 2	7 80	3.1	99	111	0.024	3.062	23.593	30.374	0.035		10 TO	9	3 4	75	127	0.025	3.311	20.331	26.066	0.040
			_ _	GI Total 1	Est. Mean Fuel (kg) 11.5 29.4 40.9	Est. Mean NOx (g) 35.2 348.8 384.0	Est. Mean HC (g) 270.9 52.8 323.7	Est. Mean CO (g) 348.8 63.3 412.1	Est. Mean PM (g) 0.4 8.8 9.2					<u></u>	GI TO	Est. Mean Fuel (kg) 12.2 31.1 43.3	Est. Mean NOx (g) 38.0 374.4 412.4	Est. Mean HC (g) 233.5 46.2 279.6	Est. Mean CO (g) 299.3 55.1 354.4	Est. Mean PM (g) 0.5 9.6 10.0
LT0	Mean total SHP %	Mean Time (Min.)	Mean est. SHP % per engine	Mean est. SHP per engine	Est. Mean FF per engine (kg/s)	Est. Mean El NOx per engine (g/kg)	Est. Mean El HC per engine (g/kg)		Est. Mean El Est. Mean El CO per PM per engine (g/kg)		LTO	Mean total SHP %	Mean Time (Min.)	Mean est. SHP % per engine	Mean est. B SHP per engine	Est. Mean FF I per engine (kg/s)	Est. Mean El NOx per engine (g/kg)	Est. Mean El HC per engine (g/kg)	Est. Mean FI Est. Mean El Est. Mean El Est. Mean El Poper HC per CO per PM per (Ag/s) engine (g/kg)	Est. Mean El PM per engine (g/kg)
₽ ©	39	1	32	579 87	0.053	7.819	3.964	4.858	0.165		AP IS	43	5.5	35	637	0.055	8.257 3.311	3.574	4.367	0.179
			<u> </u>	AP GI Total 2 LTO	Est. Mean Fuel (kg) 34.9 2.6 37.5	Est. Mean NOx (g) 272.6 6.9 279.6 663.6	Est. Mean HC (g) 138.2 79.9 218.2	Est. Mean CO (g) 169.4 103.7 273.0	Est. Mean PM (g) 5.8 0.1 5.8						AP GI Total 2 TOTAL LTO	Est. Mean Fuel (kg) 3.6.5 3.0 39.6	Est. Mean NOX (g) 287.9 8.6 296.5	Est. Mean HC (g) 124.6 52.9 177.5	Est. Mean CO (g) 152.3 67.8 220.1	Est. Mean PM (g) 6.3 0.1 6.4 6.4

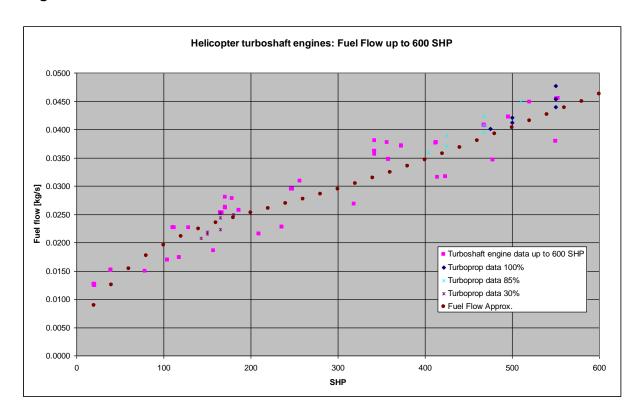

Appendix D: Estimated one hour operation emissions and indicated scale factors (status March 2009). Example: Scale factor 0.9 means that the estimated one hour fuel and emissions have been multiplied by a factor of 0.9

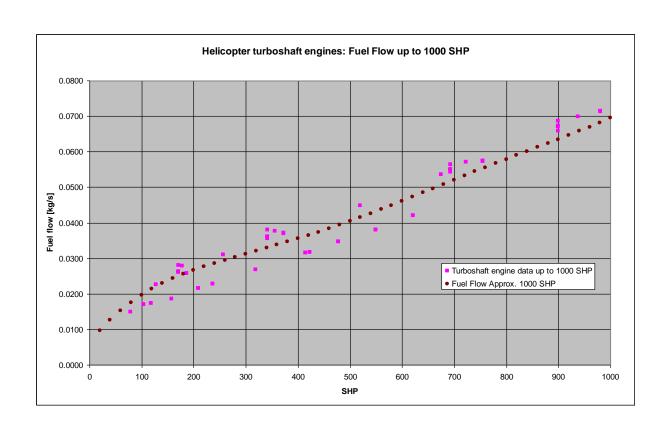

					One hour emi	ssions				
				Mean operating						
	Aircraft ICA	Aircraft_Nam	Engine_Nam	helicopters specific	One hour	One hour	One hour HC	One hour CO	One hour PM	One hour PM
Code	0	PLACEHOL	e	scale factor	fuel (kg)	NOx (kg)	(kg)	(kg)	non vol. (g)	number
H505	2HAC	DER	GE CT7-6	1	564.7	6.66	1.03	1.24	180	5.90E+18
H161	2HAC	HAL DHRUV MK.II	TM333-2B2	1	434.1	3.95	1.29	1.56	112	3.68E+18
H205	A109	AGUSTA A109	DDA250- C20R/1	1	209.7	1.11	1.74	2.18	35.9	1.18E+18
		AGUSTA	DDA250-							
H202	A109	A109A II AGUSTA	C20B	1	203.5	1.04	1.82	2.28	34	1.12E+18
H108	A109	A109 K2 AGUSTA	ARRIEL 1K1	0.9	255	1.79	1.24	1.53	53	1.75E+18
H022	A109	A109E AGUSTA	PW206C	0.9	194.4	1.01	1	3.73	35.8	1.18E+18
H124	A109	A109 Power	ARRIUS 2K	0.9	240.7	1.61	1.3	1.61	48	1.58E+18
H202	A109	AGUSTA A109	ALLISON 250-C20B	1	203.5	1.04	1.82	2.28	34	1.12E+18
H205	A109	AGUSTA A109C	DDA250- C20R	1	209.7	1.11	1.74	2.18	36	1.18E+18
		AGUSTA		0.0						
H030	A109	A109 AGUSTA	PW207C	0.9	177.7	0.93	0.9098	3.4	35	1.15E+18
H012	A119	A119 AUGUSTA	PT6B-37	1	216	1.77	0.07	0.78	54	1.78E+18
H015	A139	A139 AGUSTA	PT6T-3D	1	360	2.56	0.26	1.98	112	3.68E+18
H017	A139	A139	PT6C-67C	1	412.2	3.55	1.37	1.65	101	3.33E+18
H131	ALO2	ALOUETTE II	ARTOUSTE IIC5	1	109.7	0.61	0.82	1.02	19.4	6.39E+17
H131	ALO2	ALOUETTE II	ARTOUSTE IIC6	1	109.7	0.61	0.82	1.02	19.4	6.39E+17
		SA316B			100.7	5.01	3.02	1.02	.5.4	11352 11
H132	ALO3	ALOUETTE	ARTOUSTE IIIB	1	134.9	0.92	0.7	0.86	27.2	8.96E+17
		SA316B ALOUETTE	ASTAZOU							
H142	ALO3	III	XIVB	1	139.4	0.98	0.69	0.85	29	9.52E+17
HF30	AS32	PUMA	MAKILA 1A1	0.9	453.6	3.1	0.19	1.32	151	4.96E+18
H102	AS35	AS 350 ECUREUIL	ARRIEL 1B	0.9	133.2	0.97	0.6	0.75	29	9.39E+17
H106	AS35	AS 350B ECUREUIL	ARRIEL 1D1	0.9	146.5	1.16	0.57	0.7	33	1.10E+18
H110	AS35	AS 350 B3	ARRIEL 2B	0.83	151.6	1.3	0.51	0.62	37	1.22E+18
H110	AS35	AS 350 B3 AS 350B3	ARRIEL 2B1	0.83	151.6	1.3	0.51	0.62	37	1.22E+18
H113	AS50	ASTAR AS 350 SD2	ARRIEL 2D LTS-101-	1	200.3	1.82	0.59	0.72	52	1.53E+18
H302	AS50	ASTAR AS 550	700D2	1	164.5	1.3	0.63	0.77	38	1.11E+18
H106	AS50	FENNEC	ARRIEL 1D1	0.9	146.5	1.16	0.57	0.7	33.4	9.87E+17
H202	AS55	AS 355	DDA250- C20F	1	203.5	1.04	1.82	2.28	34	1.01E+18
H107	AS55	AS 555 FENNEC	ARRIEL 1D1	1	277.1	1.91	1.4	1.72	57	1.68E+18
H121	AS55	AS 355 N	ARRIUS 1A	1	216.2	1.19	1.67	2.08	38	1.12E+18
		AS 355 ECUREUIL	ARTOUSTE							
H133	AS55	21 AS 365 C1	III B	1	235.7	1.41	1.53	1.91	44	1.29E+18
H101	AS65	DAUPHIN AS 365 C2	ARRIEL 1A1	1	261	1.7	1.47	1.83	51	1.51E+18
H101	AS65	DAUPHIN	ARRIEL 1A2	1	261	1.7	1.47	1.83	51.2	1.51E+18
H103	AS65	AS 365 N DAUPHIN	ARRIEL 1C	1	265.2	1.75	1.45	1.8	53	1.55E+18
H104	AS65	AS 365 N1 DAUPHIN	ARRIEL 1C1	1	274.3	1.87	1.41	1.73	56	1.65E+18
		AS 365		1						
H105	AS65	DAUPHIN AS 365 N3	ARRIEL 1C2	1	289.5	2.08	1.35	1.68	61	1.81E+18
H111	AS65	DAUPHIN	ARRIEL 2C DDA250-	1	308.9	2.35	1.31	1.61	68	2.01E+18
H203	B06	BELL 206B	C20 DDA250-	1	109.5	0.61	0.82	1.03	19.3	5.71E+17
H203	B06	BELL 206B	C20B	0.9	101	0.58	0.72	0.9	18	5.38E+17
H203	B06	BELL 206B	DDA250- C20J	0.9	101	0.58	0.72	0.9	18	5.38E+17
H204	B06	BELL 206B	DDA250- C20R	0.9	105	0.63	0.7	0.86	19.4	5.73E+17
H204	B06	BELL 206B	DDA250- C20R/4	0.9	105	0.63		0.86		5.73E+17
			DDA250-							
H204	B06	BELL 206L	C20R DDA250-	1	116.7	0.7	0.77	0.96	22	6.39E+17
H206	B06	BELL 206L	C30 DDA250-	1	149.4	1.11	0.66	0.82	32	9.55E+17
H206	B06	BELL 206L	C30P	1	149.4	1.11	0.66	0.82	32	9.55E+17
H222	B06	BELL OH- 58A+	RR T63-A- 720	1	112.3	0.64	0.8	1	20	5.97E+17
H205	B06T	BELL Twin Ranger	DDA250- C20R	1	209.7	1.11	1.74	2.18	35.9	1.06E+18
H202	B105	BO 105	DDA250- C20		199.6		1.88	2.36		9.67E+17
			DDA250-	1						
H202	B105	BO 105	C20B DDA250-	1	203.5	1.04	1.82	2.28	34	1.01E+18
H208	B222	BELL 222	C40B LTS101-	1	277.8	1.92	1.39	1.72	57	1.68E+18
H301	B222	BELL 222	750C.1	1	282.6	1.98	1.38	1.7	59	1.74E+18
H221	B407	Bell 407	DDA250- C47B	1	149.4	1.11	0.66	0.82		9.55E+17
H013 H031	B412 B427	Bell 412 Bell 427	PT6T-3 PW207D	1	360 197.4	4.1 1.19	1.76	1.12 1.91	112 37	3.30E+18 1.06E+18
			DDA250-							
H208 H108	B430 BK17	Bell 430 BK117	C40B ARRIEL 1E2	1	277.8 283.3		1.39 1.38	1.72	57 59	1.68E+18 1.74E+18

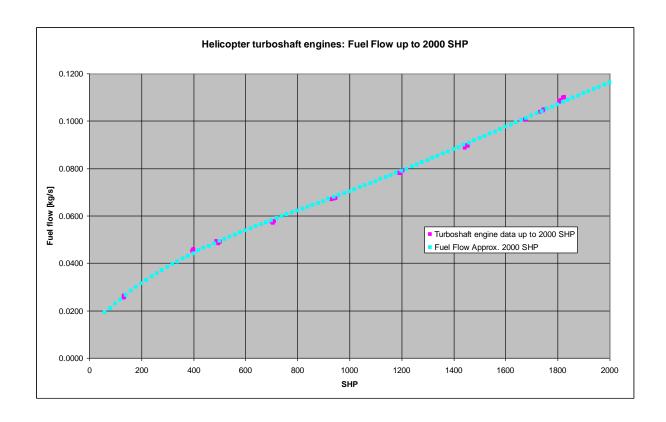
				Mean	One hour emi	ssions				
	Aircraft ICA	Aircraft_Nam	Engine Nam	operating helicopters specific	One hour	One hour	One hour HC	One hour CO	One hour PM	One hour PM
Code	O O	e e	e e	scale factor	fuel (kg)	NOx (kg)	(kg)	(kg)	non vol. (g)	number
H108	BK17	BK117 C-2	ARRIEL 1E2 LTS101-	1	283.3	1.98	1.38	1.7	59	1.74E+18
H301	BK17	BK117B	750B.1	1	280.7	1.96	1.38	1.71	58.1	1.72E+18
H123	EC20	EC 120 EC-120	ARRIUS 2F ARTOUSTE	1	114	0.66	0.79	0.98	21	6.15E+17
H132	EC20	COLIBRI	III B	1	134.9	0.92	0.7	0.86	27	8.04E+17
H110	EC30	EC 130 B4	ARRIEL 2B1	1	182.6	1.57	0.61	0.75	44.6	1.32E+18
H122	EC35	EC 135	ARRIUS 2B1	1	259.3	1.66	1.49	1.84	51	1.50E+18
H122	EC35	EC 135	ARRIUS 2B2	1	259.3	1.66	1.49	1.84	51	1.50E+18
H111	EC55	EC 155 B	ARRIEL 2C1	1	308.9	2.35	1.31	1.61	68	1.24E+18
H112	EC55	EC 155 B1 ENSTROM	ARRIEL 2C2 DDA250-	1	337.4	2.73	1.26	1.55	79	1.44E+18
H203	EN48	480	C20W	1	112.3	0.64	0.8	1	20.2	3.69E+17
H020	EXPL	MD 900	PW206A	1	223.2	1.08	0.87	3.39	43	7.88E+17
H032	EXPL	MD 902 SA341	PW207E ASTAZOU	1	212.8	1.05	0.83	3.22	36	6.53E+17
H141	GAZL	GAZELLE SA341	IIIA ASTAZOU	1	148.5	1.08	0.67	0.82	32	5.83E+17
H141	GAZL	GAZELLE SA342	IIIN2 ASTAZOU	1	148.5	1.08	0.67	0.82	32	5.83E+17
H142	GAZL	GAZELLE	XIVG	1	139.4	0.98	0.69	0.85	28.9	5.28E+17
H142	GAZL	SA342 GAZELLE	ASTAZOU XIVH	1	139.4	0.98	0.69	0.85	28.9	5.28E+17
H305	H47	CH-47 Chinook	T55-GA- 714A	1	1223.6	24.23	0.83	0.98	471	8.60E+18
H201	H500	HUGHES 500	DDA250- C18	1	98.8	0.48	0.96	1.2	16	2.94E+17
H203	H500	HUGHES 501	DDA250- C20B	1	112.3	0.64	0.8	1	20.2	3.69E+17
H204	H500	MD 500N	DDA250- C20R	1	159.2	1.08	0.83	1.02	32.2	5.89E+17
		SIKORSKY CH-53G (S-								
H501	H53	65) SIKORSKY	T64-GE-7	1	977.5	17.3	0.82	0.98	388	7.10E+18
H502	H53S	MH53E SIKORSKY	T64-GE-416	1	1083.4	20.37	0.81	0.98	427	7.81E+18
H503	H60	BLACK HAWK BELL 209 HUEYCOBR	T700-GE-700	1	507.6	5.43	1.11	1.32	15	2.74E+18
H503	HUCO	A	T700-GE-401	1	541.3	6.17	1.06	1.25	168	3.07E+18
H403	KA27	KA-32A12	TV3-117VMA	1	621.2	7.89	0.98	1.18	211	3.85E+18
H303	KMAX	K-1200 SA315B	T53 17A-1 ARTOUSTE	1	283.9	3.35	0.51	0.62	91	1.66E+18
H132	LAMA	LAMA WESTLAND	IIIB	1.18	159.2	1.08	0.83	1.02	32.2	5.89E+17
H211	LYNX	BATTLEFIEL D LYNX	GEM 42-1	1	415.9	3.62	1.36	1.66	103	1.88E+18
H203	MD52	MD 520N	DDA250- C20	1	109.5	0.61	0.82	1.03	19.3	3.53E+17
H221	MD60	MD 600N	DDA250- C47M	1	175.7	1.46	0.62	0.76	42	7.68E+17
H401	MI26	MIL MI-2	ISOTOW GTD-350	1	196	0.94	1.94	2.43	32	5.78E+17
H701	MI26	MIL MI-26	LO D-136	1	142827	4627.6	38.56	42.85	1428	2.61E+19
H402	MI8	MIL MI-8	TV2-117	1	485.1	4.95	1.15	1.41	138	2.52E+18
H011	S76	SIKORSKY S76	PT6B-36A	1	360	2.99	1.3	0.79	85	1.25E+18
H114	S76	SIKORSKY S-76 C+	ARRIEL 2S1	1	313.4	2.38	1.3	1.6	70	1.02E+18
H115	S76	SIKORSKY S-76C++	ARRIEL 2S2	1	324.5	2.56	1.28	1.56	74	1.08E+18
H207	S76	SIKORSKY S76	DDA250- C30S	1	263	1.71	1.46	1.81	52	7.59E+17
H506	S92	SIKORSKY S92A EUROCOPT ER 665	GE CT7-8A	1	735.1	10.59	0.91	1.1	271	3.97E+18
H151	TIGR	TIGER	MTR 390	1	476	4.76	1.17	1.43	133	1.95E+18
H303	UH1	BELL UH-1H AGUSTA-	T53 L13	1	271.3	3.09	0.53	0.62	84.1	1.23E+18
H304	UH1	BELL AB- 204B	T53-09A	1	235.2	2.33	0.59	0.73	65	9.55E+17
H304 H801		PZL W-3 SOKOL	PZL-10W	1						
HBU1 HP45	W3 B47G	Bell 47G-3B	TVO-435- B1A	1	309 63.4	0.3	0.65	0.82	68	
HP45	B47G	Bell 47G	TVO-435- A1D	1	90.7	0.39	1.14	1.45	13.7	2.01E+17
HP44	UH12	HILLER UH- 12A	TVO-540-1B	1	82.3	0.44	0.91	0.86	14	
HP42	HU30	HUGHES 300	HIO-360	1	54.6		0.74	54.58	8	
HP42	H269	Schweizer 269C	HIO-360	1	54.6		0.74	54.58	8	
HP62	SCOR	ROTORWAY SCORPION	ROTORWAY RW 133	1	2.4	0.01	0.04	0.07	0.3	
HP42	EN28	ENSTROM 280C	HIO-360	1	54.6	0.05	0.74	54.58	8	
HP43	R44	R44 RAVEN	HIO-540	1	59.9	0.06	0.74	59.86	9	
HP51	SYCA	BRISTOL SYCAMORE	ALVIS LEONIDES	1	144.2	1.04	1.31	0.84	30	
HP41	R22	R22 BETA	HO-360	1	72	0.07	0.84	72	6	
HP61	EXEC	ROTORWAY EXEC 90	ROTORWAY RI RW-162	1	2.4	0.01	0.05	0.06	0.3	5.49E+15

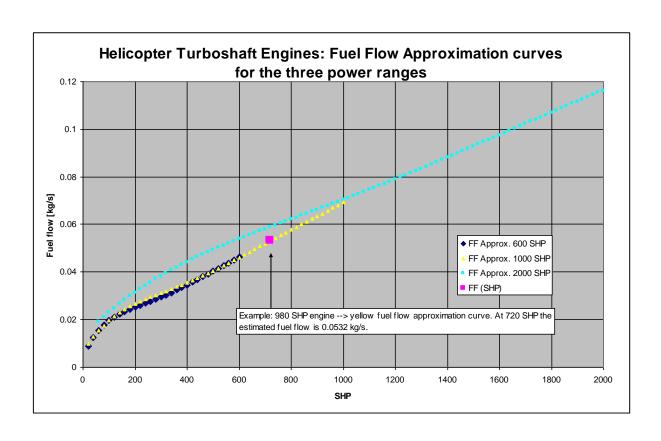
Appendix E: Graphical Representation of Approximation Functions for Piston Engines

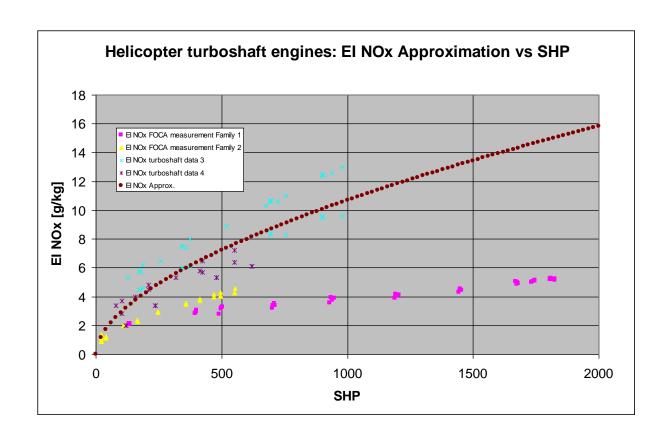





Conventional Aircraft Piston El HC (Full Rich)
(Project ECERT)


60




Appendix F: Graphical Representation of Approximation Functions for Turboshaft Engines

